
1. Introduction
Historical records show that very large earthquakes have struck the Himalayan arc (e.g., Bilham,  2019; 
Bollinger et al., 2014; Wesnousky, 2020). The 2015 M7.8 Gorkha (e.g., Avouac et al., 2015; Elliott et al., 2016; 
Galetzka et al., 2015), 1950 ∼M8.7 Assam (Chen & Molnar, 1977) and 1934 ∼M8.4 Nepal-Bihar (e.g., Chen 
& Molnar, 1977, 1983; Sapkota et al., 2013) earthquakes are the most recent examples of such hazard. These 
large events occurred on the Indian-Eurasian plate interface called the Main Himalayan Thrust (MHT). 
Paleoseismological studies of this megathrust have documented multiple >15 m slip events suggesting mul-
tiple M > 8.0 earthquakes over the last millennium (e.g., Kumar et al., 2010; Lave et al., 2005; Wesnousky 
et al., 2017). Constraining this hazard and evaluating the magnitude of the largest possible earthquake, 
hereafter referred to as maximum magnitude, is crucial in such a populous region.

In general, plate tectonics dictates that a region accommodates a certain amount of deformation in a given 
time. Most evaluations of the seismic potential of a region estimate how this deformation rate is apportioned 
among earthquakes of different magnitudes and recurrence intervals, using historical and instrumental 
seismic catalogs as a guide. Significant efforts have been put forward in this direction in California (Field 
et al., 2014), in Europe (Woessner et al., 2015) and in more local studies (e.g., Chartier et al., 2017). Some 
models incorporate aspects of earthquake physics such as multi-fault ruptures or slip profiles within rup-
tures (e.g., Field et al., 2014), and a few attempts have been made to include other aspects (e.g., quasi-static 
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elastic interactions; Shaw et al., 2018), but fault physics are not usually directly incorporated. This is largely 
because physics-based models would significantly increase the computational time and power required to 
derive large scale earthquake models such as the Himalayan arc.

One particular missing ingredient in such estimates is the influence of the spatial distribution of locked 
sections of faults. The locking degree of a fault can be kinematically inferred from geodetic data, and is then 
referred to as fault coupling,   (e.g., Chlieh et al., 2011; Hashimoto et al., 2009; Savage, 1983). At each point 
on a fault, coupling ranges between 0, corresponding to a fault that slips aseismically at its long-term defor-
mation rate (accruing no strain), and 1, corresponding to a locked fault (Avouac, 2015). In this framework, 
locked regions of the fault accumulate moment deficit, an indicator of how much elastic strain accumulates 
within the crust. Following the elastic rebound hypothesis (Reid, 1910), the moment deficit accumulated 
during the interseismic period should be balanced on the long-term average by the moment released by 
earthquakes and aseismic slip (Avouac, 2015; Molnar, 1979). Evaluating this “moment budget” can provide 
first-order estimates of a regions seismic potential (e.g., Michel et al., 2018; Rollins & Avouac, 2019; Rong 
et al., 2014; Shen et al., 2007; Stevens & Avouac, 2016, 2017).

The spatial variability of the slip budget along faults is not enough to constrain seismic hazard. On top of 
modulating the moment budget, regions slipping aseismically influence the propagation and arrest of dy-
namic ruptures, controlling the size and thus the magnitude of earthquakes (Avouac, 2015; Béjar-Pizarro 
et al., 2010; Kaneko et al., 2010; Pritchard et al., 2007). The physics of fault slip, controlled by factors such 
as rheological properties and the history of stress along the fault, influences the timing and size of earth-
quakes, and so must be accounted for in hazard estimates. For instance, it has been recently proposed that 
evaluating the ability of a fault to rupture using estimates of fracture energy would be a significant step 
towards incorporating the physics of fault slip in hazard estimates (Weng & Ampuero, 2020).

On the MHT, moment budget evaluation based on previous coupling models and modern seismicity cata-
logs concludes that there is potential for millenary  9WM  earthquakes (Stevens & Avouac, 2016). Howev-
er, the corresponding probability density function (PDF) of the maximum magnitude earthquake does not 
exclude  10WM  events. Such events have not been observed or inferred on any fault on Earth and, if they 
were to follow the empirical scaling between earthquake moment 0M  and rupture area A,  3/2

0M A  (e.g., 
Kanamori & Brodsky, 2004), would require rupture areas larger than the entire MHT. In addition, a recent 
Bayesian evaluation of coupling along the MHT (which relaxes the strong assumptions required by previous 
studies) suggests a more heterogeneous coupling distribution than previously inferred, including in particu-
lar an along-strike segmentation of the MHT with three segments that may act as aseismic barriers (Fig-
ure 1, Dal Zilio et al., 2020). These low-coupling sections of the megathrust should in principle influence 
the size of earthquakes in the Himalayas, a hypothesis supported by historical earthquakes (Bilham, 2019; 
Dal Zilio et al., 2021).

In this study, we develop a computationally efficient method to include the influence of fault physics on 
seismic hazard estimates in the Himalayas and by extension in any setting. Our results suggest that earth-
quakes of magnitude comparable to that of the 1950 wM  8.7 earthquake are the most likely maximum mag-
nitude earthquake in the Himalayas.

2. Overview of Method
Our approach combines geodetic, seismological and physical constraints to probabilistically evaluate the 
seismic potential of the MHT. We convert the coupling model of Dal Zilio et al. (2020) into a probability den-
sity function (PDF) of total moment buildup rate (Section 3). We assume that on the long-term average, (a) 
earthquakes and aseismic slip release moment at this same total rate (i.e., the moment budget is balanced) 
and (b) earthquakes (excluding aftershocks) obey a power-law magnitude-frequency distribution (MFD) 
up to a maximum magnitude (e.g., Michel et al. 2018). We build a suite of long-term earthquake rate mod-
els based on these criteria and, for each model, evaluate its probability in light of the seismic catalog. We 
then multiply these probabilities by two physics- and data-driven priors (Section 4). First, we compute the 
probability that the earthquakes in a given model would fit on the kinematically coupled part of the MHT, 
using the empirical relation between seismic moment and fault area (e.g., Kanamori & Brodsky, 2004; Ye 
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et al., 2016). Second, we include the probability that the earthquakes in a given model would have to cross 
an aseismic barrier (in order to attain their full extent) and would be able to do so. Such statistics have been 
evaluated in quasi-dynamic models of fault slip (Kaneko et al. 2010) and can be directly used in a probabil-
istic sense.

We define the probability of each seismicity model as SM Budget Cat Sca SegP P P P P , with BudgetP  the probability 
of the models total moment rate (from the moment buildup rate PDF), CatP  the probability of the model 
considering the seismic catalog, ScaP  the probability of the model considering moment-area scaling laws and 

SegP  the probability of the model considering the effect of aseismic barriers (Supporting  Information Text S4; 
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Figure 1. Regional setting of the Main Himalayan Thrust (MHT). (a) Interseismic coupling map along the MHT (Dal 
Zilio et al., 2020). Black dashed lines indicate the position of the potential barriers to earthquake propagation. The 
dots represent the microseismicity since 1995 from the ANSS catalog. Dark green dots are earthquakes selected for the 
seismic potential analysis (<200 km from the MHT trench). Thick green lines indicate the spatial extent of historical 
large earthquakes (  7.5wM  since 1500; Bilham, 2019). The thin solid blue line delimits the bottom extent of the 
coupled zone, based on a coupling threshold of 0.3. The bottom left inset shows the probability density function of the 
moment deficit rate. (b) Gray lines indicate the along-strike distribution of the mean coupling of each of the 360 000 
coupling models (Supporting Information Text S1). The black line represents the mean value of the 360,000 coupling 
models. The red dashed line indicates the coupling threshold of 0.3 used in this study. (c) Width of coupled zone based 
on a coupling threshold of 0.3. Green shading indicates the width of the aseismic barriers for this particular case as an 
example.
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Table S1). Note that any constraint can be added to this approach as long as it can be formulated as a prob-
ability density function.

3. Constraints From Coupling and Seismicity
We use the coupling model of Dal Zilio et al. (2020) (Figure 1) to build a PDF of moment buildup rate on 
the MHT, estimate the available fault area, and estimate the size of potential aseismic barriers, effectively 
propagating uncertainties in the original geodetic data to all of these constraints. Summed over the region, 
moment deficit rate is normally distributed with a mean, MDR, and standard deviation, MDR, of 9.88  0.29 
1019 N.m.yr−1 (Figure 1; Supporting Information Text S1).

Each long-term earthquake rate model is characterized by a MFD, which we assume characterizes earth-
quakes excluding aftershocks. These MFDs depend on four parameters: b , which controls the relative rates 
of small and large events; maxM , the maximum magnitude; s, the ratio of moment released by the earth-
quakes in the MFD to that released in total including aftershocks and aseismic deformation; and the total 
moment rate of all earthquakes in each model. Assuming that the moment budget is balanced and the 
MFD has a power-law form up to a maximum magnitude, the rates of earthquakes at all magnitudes can 
be expressed in closed form and tied to the geodetic moment buildup rate (Avouac, 2015; Molnar, 1979). In 
light of the debate on the shape of MFDs for large magnitude earthquakes (Frohlich, 2007; Kagan, 1993; 
Wesnousky, 1995), we test two families of seismicity models. The first, which we call a truncated model, is 
a cumulative power-law MFD (the Gutenberg-Richter law) truncated at maxM  (e.g., Avouac, 2015; Michel 
et al., 2018; Stevens & Avouac, 2016). The second, which we call a tapered model, is formed from truncating 
an incremental power-law MFD at maxM , and has a tapered form in cumulative magnitude-log-frequency 
space (Rollins and Avouac, 2019, Supporting Information Text S2, Figure S2). Note that it is not the same 
as the tapered model used by (Kagan & Jackson, 2000) and subsequent studies. To compute the long-term 
MFDs, we sample the space of max,M b and s, assuming that maxM  and b have uniform priors and that s 
is normally distributed. The total moment release rate of each long-term MFD is a sample from the PDF of 
the moment buildup rate (multiplied by the MFDs s), so that the starting distribution of MFDs intrinsically 
incorporates the distribution of BudgetP .

For each MFD, at each magnitude eachM , we compute the probability that a Poisson process with the event 
rate given by the MFD would, within the timespan of the seismic catalog, generate the exact number of 
earthquakes of magnitude eachM  that are in the seismic catalog. The catalog-based probability CatP  for each 
model is then the product of these probabilities over the magnitude bins. In this way, we probabilistically 
estimate the long-term earthquake rates at each magnitude based on the moment budget and seismic cata-
log (Michel et al., 2018; Rollins & Avouac, 2019).

To estimate CatP , we need a declustered seismicity catalog (Supporting Information Text S3). We combine 
two earthquake catalogs (Supporting Information Text S6 and Figure S9), one covering the instrumental 
period (1995–2020, ANSS catalog, https://earthquake.usgs.gov/earthquakes/search/), the other including 

 7.7wM  historical earthquakes (Bilham, 2019; Table S2), in a MFD with magnitude binning 0.5, corre-
sponding roughly to the uncertainty on historical earthquake magnitudes. We decluster the instrumental 
catalog using the probabilistic approach of Marsan & Helmstetter (2017) and retain events that are locat-
ed within 200 km northward from the main frontal thrust, the surface expression of the MHT (Figure 1, 
 Supporting Information Text S6). We assume the historical catalog is declustered by nature and complete 
after 1500 (Bilham, 2019) above 7.7wM . As the 1897 8.2wM  Shillong earthquake was not on the MHT, we do 
not include this event.

4. Constraints From Earthquake Physics
We separately evaluate the product Sca SegP P , the probability that an earthquake follows the moment-ar-
ea scaling and behaves according to the physics of fault slip governed by rate-and-state equations. ScaP  is 
obtained by considering a moment-area scaling of      10 0 10Log 3 / 2 Log 15.15 0.23M A  (Figure S4, 
Supporting Information Text S5 and S7). We assume the coupling contour 0.3 defines the limit between 
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the seismogenic and creeping areas of the fault. SegP  is the probability 
of an event to pass through an aseismic barrier, which depends on the 
non-dimensional parameter characterizing barrier efficiency, B (Fig-
ure  S7; Kaneko et  al.  2010). This efficiency is defined as the ratio be-
tween the barrier resistance to a perturbation and the effective size of the 
perturbation,
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where VSΔ  is the barrier normal stress, VSa  and VSb  the constitutive pa-
rameters of the rate-and-state law, DynV  the slip rate as the seismic event 
propagates through the barrier, iV  the interseismic slip rate, and VSD  the 
width of the barrier (Figure  S6). VWΔ  and VWD  are the earthquakes 
mean stress drop and length, respectively. The subscripts VS and VW 
stand for Velocity Strengthening and Weakening, respectively describing 
the frictional behavior of the barrier and the seismic asperity in terms of 
rate-and-state friction (Dieterich, 1978; Ruina, 1983).   is the proportion 
of stress redistributed by the earthquake that perturbs the barrier and 
depends on the geometry of the system, assuming stress is redistributed 
uniformly by the event (Kaneko et al. 2010). For the Himalaya case, all 
parameters determining B, and their uncertainties, can either be estimat-
ed from the coupling models (Figures 1b and 1c) or from other published 
studies. We chose a priori PDFs for the parameters involved within rea-
sonable, but very large, bounds (Supporting Information Text S5). From 
this, we sample the space of magnitudes, compute the corresponding spa-
tial extent of ruptures and evaluate their probability considering the scal-
ing and their probability to cross barriers. For instance, an earthquake of 
magnitude 9 would have to potentially cross 2 or 3 barriers and the prob-
ability of crossing these barriers can be stochastically tested. All mag-
nitudes and locations can be tested and lumped into the PDF of earth-
quakes for this region. The complete description of the test for a given 
earthquake is given in Supporting Information Text S7.

We combine the PDF of seismic models that satisfy the moment budget 
and the MFD of the current and historical catalogs with that of the phys-
ical consistency of earthquakes, and evaluate the marginal PDF of the 
maximum magnitude earthquake and of its recurrence time. Finally, from 

SMP , thus knowing the earthquake rate of each magnitude for each seis-
micity model and their related probability to be plausible, we calculate the 
probability to have an earthquake over a certain magnitude for a given pe-
riod of time, ( | )wP M M T  (Michel et al., 2018; Rollins & Avouac, 2019). 
Such estimates are important inputs for seismic hazard mapping.

4.1. The Seismogenic Potential of the MHT

We first evaluate Budget CatP P , the probabilistic long-term earthquake mod-
el given just the PDF of moment buildup rate and the seismic catalog, 
for both the truncated and tapered forms (Figure 2a). For the truncated 
model, we define max as the recurrence interval of an earthquake of mag-
nitude maxM . The marginal PDF of SMP  for the truncated model in the 

maxM  - max space is shown by the gray shaded distribution in Figure 2a. 
The marginal PDF of maxM  indicates plausible values between wM  8.15 
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Figure 2. (a) Seismic potential analysis using only the moment budget 
and the seismicity catalog as constraints. The blue and green elements 
in the figure are associated to the truncated and tapered magnitude-
frequency distribution models, respectively. The dots indicate the mean of 
the marginal probability density function (PDF) of the seismicity models. 
The dashed lines indicate the spread of the 1% best seismicity models. 
Red and orange crosses and error bars indicate the rate of occurrence of 
historical earthquakes and earthquakes occurring over the instrumental 
period, respectively. The gray shaded distribution indicates the marginal 
probability of the maximum magnitude earthquake and its rate. The 
solid lines on the wM  axis indicate the marginal probability of maxM , 

maxMP . The blue solid line on the earthquake frequency axis indicate 
the probability of maxM  frequency, assuming that maxM  is equal to the 
mode (i.e., peak of the PDF) of maxMP , ModeM , for the truncated model: 
 max max Mode( | )P M M . The dashed lines on the earthquake frequency 

axis indicate the probability of having an event of magnitude  ModewM M  
at a certain rate,  :    Mode| wP M M .    Mode| wP M M  considers 
all magnitudes in the seismicity models, while  max max Mode( | )P M M  
considers only the recurrence rate of maxM . The top-right inset shows the 
marginal probability of the b-value. Note that the seismicity MFDs in the 
figure are not cumulative. (b) PDF (expressed in counts) of earthquakes 
considering the moment-area scaling law and the Main Himalayan Thrust 
segmentation, from 408,500 events uniformly sampled between 6wM  and 
10. The pink histogram shows the PDF of earthquakes considering only 
the moment-area scaling law while the yellow histogram considers both 
the scaling law and the coupling segmentation into account. The black line 
is the ratio between the yellow and pink histograms, representative the 
effect of the segmentation, alone.
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and  10wM  (Figure 2a), with two modes (i.e., peaks of the PDF) at maxM  = 8.65 and 8.95. Those are as-
sociated with modes of  max max Mode( | )P M M  at max = 400 and 1000 years, respectively. The probability 

   Mode| wP M M  of having an event of magnitude  ModewM M  at a certain rate,  , taking all events of all 
seismicity models into account, can also be estimated (Supporting Information Text S4). For ModeM  = 8.65, 

   Mode| wP M M  has two peaks (Figure 2a), one at   = 400 years arising from the actual recurrence time 
of maxM  (same recurrence time as for  max max Mode( | )P M M ) and one at 4000 years arising from any events 
with  ModewM M  present in seismicity models with larger maxM  than ModeM . The marginal probability of b 
(solid blue line in Figure 2a inset) peaks at 0.92.

The maxM  marginal PDF for the tapered model (Figure 2a) rises at wM  8.25, peaks at maxM  = 8.65 and ap-
proaches zero again at wM  9.65. It is associated with a peak of    Mode| wP M M  at   = 1250 years. The 

maxM  marginal probability peaks at b = 0.75. As with the truncated form, earthquakes of magnitude larger 
than 10 cannot be ruled out when scaling laws and segmentation of coupling are not accounted for.

The distribution of plausible events considering the moment-area scaling law is shown as pink histograms 
in Figures 2b and S12. Events with magnitude larger than 9.15 are less probable because of the scaling law, 
whereas events with magnitude over 9.85  are impossible (Figure 2b) because they simply cannot fit on the 
coupled part of the MHT.

The distribution of plausible events considering the combined effect of the moment-area scaling law and 
the MHT segmentation is shown as yellow histograms in Figure 2b and S12. The ratio between the yellow 
and the pink histogram allows us to visualize the effect of the MHT segmentation by itself (black line 
in Figure  2b and  S12). From this ratio, the influence of segmentation becomes obvious for events with 

 8.0 8.5wM , as these events must propagate through one or multiple barriers. Multiple parameters high-
light the role of barriers, including event magnitude, moment-area scaling and stress drop. For instance, we 
note that events with  9.5wM  necessarily need to pass through all 3 barriers. However, smaller events with 
low moment-area scaling (i.e., less than 1.5) have an anomalous length with respect to the mean scaling, 
which involves these events must break through multiple barriers, hence a decreased probability. Stress 
drop, VWΔ , has also a strong influence, with events with  VWΔ 1 MPa being less likely to power through 
barriers than events with  VWΔ 100 MPa, hence there lower final probability. Other parameters do not 
seem to have a striking influence although they theoretically should, either due to the range of values tested 
or because their influence is hidden by that of other parameters. Note that all parameter distributions are 
controlled by the initial range of wM  tested.

The combined effect of moment budget, seismicity catalog, scaling law and fault segmentation on the mar-
ginal PDF of the maximum magnitude earthquake, maxMP , and of the corresponding recurrence time is 
shown in Figure 3 and S13. For the truncated seismicity model, the scaling law and segmentation effect does 
not change the mode of maxMP , and hence of  max max Mode( | )P M M  (solid dark blue line in Figure 3), but 
the marginal PDFs shrink significantly with no probable earthquake above  9.5.wM  The corresponding 
recurrence time associated with    Mode| wP M M  reduces significantly from 3981 years to 2512 years. The 
second peak at 400 years does not move as it is arises from the recurrence rate of the seismicity models maxM  
(for max ModeM M ) which hasnt changed from the scaling law and segmentation effects. For the tapered 
seismicity model, the scaling law and segmentation effect changes the mode of maxMP  slightly from 8.65wM  
to 8.55wM . max 9.5M  were already initially improbable and the marginal PDF of the maximum magni-
tude earthquake shrinks only slightly. Consequently, the corresponding recurrence time associated with 
   Mode| wP M M  just slightly reduces from 1259 to 1000 years.

The probability to have at least an earthquake with magnitude over 9 for a time period of 1000  years, 
 ( 9 | 1000 )P M T yrs , is equal to ∼12% and 3% for the truncated and tapered seismicity models, respec-

tively (Figure 3e and 3f). The effect of scaling law and segmentation only arises for large time periods, on 
the order of the recurrence time of events with  8.0 8.5wM  (∼1–4 103 yrs). Past this limit, the different 
physics-based constraints play a more important role as larger event are expected to happen during this time 
period. For example, for a 10,000 year period using the truncated model, M 9 are less probable using the 
scaling law and segmentation constraints than if it was not taken into account. Whereas for shorter time 
periods (e.g., 100 years), M 9 events will anyways be improbable. Finally, we can evaluate the probability 
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of an event of a given magnitude for a given position along the megathrust considering the segmentation of 
the megathrust and the moment-area scaling law. Figure 3g shows an example of the probability of a point 
of the MHT to be part of a 9wM . Consequently, the distance between a chosen site and the seismic source 
can be calculated (Figure 3h), such estimate being one important element of the seismic hazard evaluation.

5. Discussion and Conclusion
Our estimate of the seismic potential of the Himalaya accounts for observations and for our current 
knowledge of the physics of earthquakes. In addition, we consider uncertainties on the MHT coupling 
distribution (Dal Zilio et al., 2020), based on uncertainties in geodetic measurements and rheology, and 
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Figure 3. (a), and (c) show the evolution of the marginal probability density function (PDF) of the maximum magnitude for an earthquake (a) and of the 
marginal PDF of the corresponding recurrence times (c) when progressively adding constraints, for the case of truncated MFDs. Dotted lines indicate the 
marginal PDFs for the moment budget analysis, the dashed lines indicate marginal PDFs when adding the earthquake scaling constraint and the continuous 
line indicate the marginal PDFs with all constraints. (e) Shows the probability of occurrence of earthquakes of magnitude larger than Mw over a period of X yrs 
for the case of truncated MFDs. Dashed lines indicate the PDF considering only the moment budget analysis while continuous lines show the PDF including 
all observational and physics-based constraints. We show the probability of occurrence of such events for 4 time periods, 30, 100, 1e3, and 1e4 yrs. (b), (d), and 
(f) are the same as (a), (c), and (e) for the case of tapered MFDs. (g) Marginal probability of rupture extent for a wM  nine earthquake. This PDF directly derives 
from our PDF of seismic models accounting for all observational and physics-based constraints. K and D stand for Kathmandu and Delhi. (d) Cumulative PDF 
of a 9wM  source distance from Kathmandu and Delhi.
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the uncertainties on the MFD, based on the uncertainties on the magnitudes of recorded and historical 
earthquakes. We consider uncertainties on the frictional constitutive parameters of the MHT (e.g., barri-
ers size, position and their efficiency) as well as uncertainties on the global statistics of earthquakes (i.e., 
moment-area scaling law). The combination of all these uncertainties suggest earthquakes of magnitude 
comparable to that of the 1950 earthquake (∼8.7, Bilham, 2019) are the most probable candidates for being 
the largest possible earthquakes in the Himalayas. The associated most probable recurrence time for such 
event exceeds 1000 years. However, given the model of magnitude frequency distribution considered, the 
probability of occurrence of an earthquake of magnitude larger than 8 over a 100 years ranges from ∼60% 
to 80%, a number high enough for large hence damaging earthquakes to be considered seriously (Figure 3).

Our analysis depends on several assumptions, including assumptions impacting the moment deficit rate 
and the seismic catalogs. First, the historical catalog includes the 1950  8.7wM  Assam earthquake al-
though this rupture only partially overlaps with the coupling map. We obtain similar results with or without 
including this event in the catalog (Figure S13 and S14). Second, the width of the seismogenic zone and thus 
the associated barriers size are based on a coupling threshold of 0.3. Tests with coupling thresholds of 0.2 
and 0.4 (Figure S12) shifts the PDF of maximum magnitude of only ∼0.1. Third, the current coupling mod-
el may not be representative of the long-term coupling model (e.g., Hardebeck & Loveless, 2018). Fourth, 
we assume a Poissonian distribution of events. However, whether an event passes through barriers or not 
must influence the magnitude and the timing of the next large earthquake. More fundamentally, we do not 
account for time dependent processes while the timing of previous large earthquakes must be of influence. 
Fifth, and this is impossible to test yet, we assume the current or the historical earthquake catalog is repre-
sentative of the long term seismicity rate. Large earthquakes (  7.5)wM  might not follow the same MFD 
as small ones. In such case, neither of the seismicity models tested (i.e., truncated and tapered) would be 
representative of the seismicity for the MHT.

In conclusion, our study shows how the seismic potential of a fault can be evaluated taking into account 
first-order physics of fault slip and all sources of uncertainties. We introduce constraints by considering 
global scaling laws and the frictional segmentation of the MHT. We show that in the case of the MHT, 

max 9.5M  are implausible considering the moment-area scaling law, and that max 8.5M  get less and less 
probable due to the segmentation. Such estimation of the seismic potential can then be used to construct 
probabilistic seismic hazard assessments.

Data Availability Statement
The historical seismicity data is available through Bilham,  2019. The coupling model data is available 
through Dal Zilio et al. (2020).
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